Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kanji Kubo* and Akira Mori

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

Correspondence e-mail:
kubo-k@cm.kyushu-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.071$
$w R$ factor $=0.303$
Data-to-parameter ratio $=18.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Cyanophenyl 4-n-decanyloxybenzoate

The title compound, $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3}$, has a phase sequence of crystals-smectic A-nematic-isotropic liquid. The molecular length of the compound is 25.323 (9) \AA. Intermolecular contacts between two CN groups, between a carbonyloxy and a CN group, and between two carbonyloxy groups are observed in the crystal state.

Comment

Mesomorphic sequences of 4-cyanophenyl 4-n-alkoxybenzoates (CPnOB) are dependent on the length of the alkoxy chains, i.e. crystals-nematic-isotropic for $n=5-8$, crystalssmectic A-nematic-isotropic for $n=9-11$, and crystalssmectic A-isotropic for $n=12$ (Vill, 2000). The crystal structures of CPnOB with some alkyl chains $(n=4,5,6,7,8,12)$ have been reported (Baumeister et al., 1981; Ibrahim et al., 1995; Iki \& Hori, 1995; Kubo \& Mori, 2001). We now report the structure of 4-cyanophenyl 4-n-decanyloxybenzoate (CP10OB), aimed at elucidating the relationships between mesomorphic properties and molecular packings of CPnOB in the crystal lattice.

Received 23 February 2001
Accepted 5 March 2001
Online 9 March 2001

The intersection angle between the least-squares planes A (defined by $\mathrm{C} 2-\mathrm{C} 7$) and B (defined by $\mathrm{C} 9-\mathrm{C} 14$) of CP 10 OB is $49.6(2)^{\circ}$, which is similar to those [49.2 and $50.5(1)^{\circ}$] of CP8OB (Iki \& Hori, 1995) and CP12OB (Kubo \& Mori, 2001), while that between the least-squares planes B and C (defined by $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 8)$ is $8.3(3)^{\circ}$, which is similar to those (8.3 and 7.9°) of CP 8 OB and CP 12 OB . The paraffin chains have alltrans conformations and the molecular length of the compound is 25.323 (9) \AA for the N1-C24 distance.

Intermolecular close contact between CN groups of a pair of antiparallel molecules is observed in the crystal lattice. The distance for $\mathrm{C} 1-\mathrm{N} 1^{1}$ [symmetry code: (i) $1-x, 1-y$, $-1-z$] is $3.50(7) \AA$, which is similar to those (3.486 and $3.514 \AA$) of CP8OB (Iki \& Hori, 1995) and CP12OB (Kubo \& Mori, 2001), and shorter than those (3.829 and $3.602 \AA$) of CP4OB (Ibrahim et al., 1995) and CP6OB (Iki \& Hori, 1995). Carbonyloxy groups of another pair of antiparallel molecules are also closely arranged. The distances for $\mathrm{O} 1-\mathrm{O} 1^{\text {ii }}$ [symmetry code: (ii) $2-x, 1-y,-z$], $\mathrm{O} 1-\mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{O} 1-\mathrm{C} 8^{\mathrm{ii}}$ are 3.403 (6), 3.578 (5) and 3.508 (7) \AA, respectively. In addition, close contacts between a CN and a carbonyloxy group of

Figure 1
The molecular structure of CP10OB showing 50% probability displacement ellipsoids.

Figure 2
Packing diagram viewed down the a axis. H atoms have been omitted for clarity.
the other pair of molecules are observed; the distances for $\mathrm{C} 1-\mathrm{O} 1^{\text {iii }}$ [symmetry code: (iii) $2-x, 1-y,-1-z$] and $\mathrm{N} 1-\mathrm{O} 1^{\text {iii }}$ are 3.565 (7) and 3.794 (7) \AA, respectively.

The crystal of CP 10 OB has a distinct layer structure through infinite networks of the $\mathrm{CN} \cdots \mathrm{CN}$ interaction, which is similar to those of CP 8 OB and CP 12 OB . In conclusion, correlations between crystal structure and mesomorphic properties of CPnOB with different phases have not been found.

Experimental

The title compound (CP10OB) was prepared by esterification of 4cyanophenol with 4-n-decanyloxybenzoyl chloride. Single crystals of CP10OB were obtained by recrystallization from ethyl acetate.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} \\
& M_{r}=379.48 \\
& \text { Triclinic, } P \overline{1} \\
& a=10.9982(17) \AA \\
& b=14.850(2) \AA \\
& c=6.7625(6) \AA \\
& \alpha=96.864(9){ }^{\circ} \\
& \beta=93.694()^{\circ} \\
& \gamma=81.945(12)^{\circ} \\
& V=1084.5(2) \AA^{\circ}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.926, T_{\text {max }}=1.000$
5095 measured reflections
4695 independent reflections
1517 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.303$
$S=0.92$
4695 reflections
253 parameters
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-18 \rightarrow 18$
$l=0 \rightarrow 8$
3 standard reflections frequency: 120 min intensity decay: 0.7%

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.132(6)$	$\mathrm{O} 3-\mathrm{C} 12$	$1.360(5)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.195(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.441(7)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.367(6)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.465(6)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.390(5)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.4(7)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$110.8(4)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$-47.0(7)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$171.6(4)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	$2.1(8)$	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{C} 15-\mathrm{C} 16$	$179.9(4)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$-177.5(4)$		

All H atoms were located at ideal positions and constrained with $U_{\text {iso }}$ held fixed to $1.2 U_{\text {eq }}$ of the parent atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall \& du Boulay, 1995); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Baumeister, U., Hartung, H., Graniec, M. \& Jaskólski, M. (1981). Mol. Cryst. Liq. Cryst. 69, 119-130.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
Iki, H. \& Hori, K. (1995). Bull. Chem. Soc. Jpn, 68, 1281-1288.
Ibrahim, I. H., Paulus, H., Mokhles, M. \& Haase, W. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 258, 185-190.
Kubo, K. \& Mori, A. (2001). Acta Cryst. E57, o113-115.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Vill, V. (2000). LiqCryst 3.5. Database of Liquid Crystalline Compounds. Fujitsu Kyushu System Engineering, Fukuoka, Japan.

